Gelatin is an attractive biocompatible and biodegradable material for biopolymeric nanofiber production, but its gelation at room temperature hinders aqueous electrospinning processes. This study introduces gamma-valerolactone (GVL) as an eco-friendly additive to suppress cooling-induced gelation, enabling stable room-temperature electrospinning of gelatin solutions. We investigated the dissolution behavior, temperature-dependent gelation, and rheological characteristics of gelatin with varying water/GVL ratios. The addition of GVL effectively suppressed gelation, maintaining the solution state at room temperature. Despite the presence of GVL, gelatin solutions exhibited chain entanglement at higher concentrations, resulting in uniform nanofibers with an average diameter of 450 nm produced via electrospinning. Furthermore, incorporating ribose as a natural cross-linking agent and performing the Maillard reaction enhanced nanofiber density and provided structural stability under moist conditions.